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Abstract
@is document describes, how the trajectories are transformed into
room-coordinates from a mathematical point of view and how to imple-
ment them. We assume, that we have just one instrument with one voice.

1 Introduction

Lets have a look on how to define a curve:

Definition 1. A parameterized curve is a piecewise C°°—function defined
on a closed and bounded interval I:

)R>I R"

In our application, ¢ represents the tick given by MuseScorg and the interval
I = [0, Lengthofthepiece] represents the domain of the piece. Each trajectory
t; in the score defines the parameterized curve fi on the interval I; = [a;,b;] C I,
where a; represents the startpoint and b; the endpoint of the scope and d; :=
b; — a; the duration. Assuming, that the intervals I; are disjoint and |J, I; = I,
we can define the global parameterized curve as

FO): =3 L £i)

jectories don’t care about their absolute position in the score. Therefore we
define f;(t): [0,d;] — R™,t — f;(t + a;), which translates each trajectory such

that-eachstarts at time zero. This leads to:
F@&) = 1p - filt — ai)

1.1 Dismantling of a trajectory

Theorem 1. Trajectory f;(t): [0,d;] = R™, with |f;(t)] > 0, Vt € [0,d;] can be
diwvided into two functions g;(t): [0,d;] = [0,1] and h;(t): [0,1] — R" sueh that:

1 fi=gioh
2. fi(0) = hi(0) and fi(d;) = hs(1)
3. |h;i(t)| = const, ¥Vt € [0,1]
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Proof. This is a simple consequence from basic geometry lecture. O

The advantage of this separation is; that g¢;(t) can be interpreted as the
function which defines the acceleration of the trajectory for a given time and
h;(t) is just the projection that maps onto the trace of the trajectory. We can
analyze those two classes of functions independently.

2 Acceleration functions

From the previous section, it follows that:
Definition 1. g(t) : [0,d] — [0,1] is called an acceleration function iff
1. g(0)=0
2. g(d)=1
Theorem 1. ¢(t) is an acceleration function — §(0) >0 and (1) > 0.

Proof. Trivial. O

2.1 Constant Acceleration

We want to construct an acceleration function g(¢) : [0, d] — [0, 1]with constant
acceleration and given start speed. Our function must therefore fullfill:

1. g(0)=0

2. g(d)=1

3. Constant acceleration = §(t) = const, Vt € [0,d]
4. Fixed start speed = ¢(0) = vg

Let us start with requirement 3:

§(t)= At + B

]
e
L

g(t) = %Aﬁ +Bt+C

We should respect 1:
0=g(0)=C = C=0
4 leads to:

Uoig'(O):B = B =1
Using this information leads to:

1
g(t) = §At2 + vt


itz
Cross-Out

itz
Highlight
given time, and...

itz
Highlight
if

itz
Highlight

itz
Highlight
fulfill


We can now determine the constant A using 2:
! 1 2
1=g(d)= §Ad + vod

1
— §Ad2 =1—wvod

l—Uod

= A=2 pE

We now have defined g(t):

1-— ’Uod
g(t) = yo 2 + vt

2.1.1 Remark

We still need to checl@at g(t) € [0,1] ¥t € [0,d]. Since g(t) is a convex
or concave function and we know that ¢(0) > 0, it is sufficent to select our
constants in such a way that ¢(d) > 0.

1-— 1-—
Ogg(d)ZAd—FUo:Q d:0dd—|—1}0:2 ’Uod+v0
<:>0S2(1—U0d)+’U0d=2—2U0d+’Uod=2—’U0d
< vod < 2
== <g
°=d

. . . 2
We have a restriction on the start speed: Start speed must not exceed —=-—-.
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