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Abstract

This document describes, how the trajectories are transformed into
room-coordinates from a mathematical point of view and how to imple-
ment them. We assume, that we have just one instrument with one voice.

1 Introduction

Lets have a look on how to define a curve:

Definition 1. A parameterized curve is a piecewise C∞−function defined
on a closed and bounded interval I:

c(t) : R ⊃ I → Rn

In our application, t represents the tick given by MuseScore and the interval
I = [0, Lengthofthepiece] represents the domain of the piece. Each trajectory

ti in the score defines the parameterized curve f̂i on the interval Ii = [ai, bi] ⊂ I,
where ai represents the startpoint and bi the endpoint of the scope and di :=
bi − ai the duration. Assuming, that the intervals Ii are disjoint and

⋃
i Ii = I,

we can define the global parameterized curve as

f(t) : =
∑
i

1Ii · f̂i(t)

Trajectories don’t care about their absolute position in the score. Therefore we
define fi(t) : [0, di] → Rn, t 7→ f̂i(t + ai), which translates each trajectory such
that each starts at time zero. This leads to:

f(t) =
∑
i

1Ii · fi(t− ai)

1.1 Dismantling of a trajectory

Theorem 1. Trajectory fi(t) : [0, di]→ Rn, with |fi(t)| > 0, ∀t ∈ [0, di] can be
divided into two functions gi(t) : [0, di]→ [0, 1] and hi(t) : [0, 1]→ Rn such that:

1. fi = gi ◦ hi

2. fi(0) = hi(0) and fi(di) = hi(1)

3. |hi(t)| = const, ∀t ∈ [0, 1]
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Proof. This is a simple consequence from basic geometry lecture.

The advantage of this separation is, that gi(t) can be interpreted as the
function which defines the acceleration of the trajectory for a given time and
hi(t) is just the projection that maps onto the trace of the trajectory. We can
analyze those two classes of functions independently.

2 Acceleration functions

From the previous section, it follows that:

Definition 1. g(t) : [0, d]→ [0, 1] is called an acceleration function iff

1. g(0) = 0

2. g(d) = 1

Theorem 1. g(t) is an acceleration function =⇒ ġ(0) ≥ 0 and ġ(1) ≥ 0.

Proof. Trivial.

2.1 Constant Acceleration

We want to construct an acceleration function g(t) : [0, d]→ [0, 1]with constant
acceleration and given start speed. Our function must therefore fullfill:

1. g(0) = 0

2. g(d) = 1

3. Constant acceleration =⇒ g̈(t) = const, ∀t ∈ [0, d]

4. Fixed start speed =⇒ ġ(0) = v0

Let us start with requirement 3:

g̈(t) = A

⇐⇒ ġ(t) =

∫
g̈(t) = At + B

⇐⇒ g(t) =

∫
ġ(t) =

1

2
At2 + Bt + C

We should respect 1:

0
!
= g(0) = C =⇒ C = 0

4 leads to:
v0

!
= ġ(0) = B =⇒ B = v0

Using this information leads to:

g(t) =
1

2
At2 + v0t
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We can now determine the constant A using 2:

1
!
= g(d) =

1

2
Ad2 + v0d

⇐⇒ 1

2
Ad2 = 1− v0d

⇐⇒ A = 2
1− v0d

d2

We now have defined g(t):

g(t) =
1− v0d

d2
t2 + v0t

2.1.1 Remark

We still need to check, that g(t) ∈ [0, 1] ∀t ∈ [0, d]. Since g(t) is a convex
or concave function and we know that ġ(0) ≥ 0, it is sufficent to select our
constants in such a way that ġ(d) ≥ 0.

0 ≤ ġ(d) = Ad + v0 = 2
1− v0d

d2
d + v0 = 2

1− v0d

d
+ v0

⇐⇒ 0 ≤ 2(1− v0d) + v0d = 2− 2v0d + v0d = 2− v0d

⇐⇒ v0d ≤ 2

⇐⇒ v0 ≤
2

d

We have a restriction on the start speed: Start speed must not exceed 2
duration .
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